domenica 26 luglio 2015

The VASOGRADE A Simple Grading Scale for Prediction of Delayed Cerebral Ischemia After Subarachnoid Hemorrhage

Background and Purpose—Patients are classically at risk of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage. We validated a grading scale—the VASOGRADE—for prediction of DCI.
Methods—We used data of 3 phase II randomized clinical trials and a single hospital series to assess the relationship between the VASOGRADE and DCI. The VASOGRADE derived from previously published risk charts and consists of 3 categories: VASOGRADE-Green (modified Fisher scale 1 or 2 and World Federation of Neurosurgical Societies scale [WFNS] 1 or 2); VASOGRADE-Yellow (modified Fisher 3 or 4 and WFNS 1–3); and VASOGRADE-Red (WFNS 4 or 5, irrespective of modified Fisher grade). The relation between the VASOGRADE and DCI was assessed by logistic regression models. The predictive accuracy of the VASOGRADE was assessed by receiver operating characteristics curve and calibration plots.
Results—In a cohort of 746 patients, the VASOGRADE significantly predicted DCI (P<0.001). The VASOGRADE-Yellow had a tendency for increased risk for DCI (odds ratio [OR], 1.31; 95% CI, 0.77–2.23) when compared with VASOGRADE-Green; those with VASOGRADE-Red had a 3-fold higher risk of DCI (OR, 3.19; 95% CI, 2.07–4.50). Studies were not a significant confounding factor between the VASOGRADE and DCI. The VASOGRADE had an adequate discrimination for prediction of DCI (area under the receiver operating characteristics curve=0.63) and good calibration.
Conclusions—The VASOGRADE results validated previously published risk charts in a large and diverse sample of subarachnoid hemorrhage patients, which allows DCI risk stratification on presentation after subarachnoid hemorrhage. It could help to select patients at high risk of DCI, as well as standardize treatment protocols and research studies.

Stroke 2015

Follow-up nerve conduction studies in CIDP after treatment with IGIV-C: Comparison of patients with and without subsequent relapse

Introduction: Electrodiagnostic studies (EDX) are not performed routinely before treatment suspension in CIDP, and no data exist regarding their value in predicting clinical relapse. Methods: Serial EDX (baseline and after IGIV-C therapy) were analyzed from subjects in the ICE clinical trial who responded to IGIV-C treatment and were subsequently re-randomized to placebo in an extension phase. Comparisons were made between subjects who relapsed and those who did not. Results: A total of 55% (6/11) of the Relapse group had an increase in total number of demyelinating findings (DF) versus 8% (1/13) in the No Relapse group (P = 0.023). In the Relapse group, 100% had ≥1 new DF and 73% (8/11) had ≥4 new DF versus 60% (8/13) and 8% (1/13), respectively, in the No Relapse group. Conclusions: An increased total number of DF or the occurrence of ≥4 new DF may indicate a higher risk of clinical relapse after treatment cessation in IGIV-C-responsive patients. 

Muscle & Nerve 2015

Disease-modifying strategies for Parkinson's disease

Parkinson's disease (PD) is an increasingly prevalent and progressively disabling neurodegenerative disease. The impact of PD on patients and their families as well as its burden on health care systems could be substantially reduced by disease-modifying therapies that slow the rate of neurodegeneration or stop the disease process. Multiple agents have been studied in clinical trials designed to assess disease modification in PD, but all have failed. Over the last 3 years, clinical trials investigating the potential of adeno-associated virus serotype 2 (AAV)-neuturin, coenzyme Q10, creatine, pramipexole, and pioglitazone reported negative findings or futility. Despite these disappointments, progress has been made by expanding our understanding of molecular pathways involved in PD to reveal new targets, and by developing novel animal models of PD for preclinical studies. Currently, at least eight ongoing clinical trials are testing the promise of isradipine, caffeine, nicotine, glutathione, AAV2-glial cell-line derived neurotrophic factor (GDNF), as well as active and passive immunization against α-synuclein (α-Syn). In this review, we summarize the clinical trials of disease-modifying therapies for PD that were published since 2013 as well as clinical trials currently in progress. We also discuss promising approaches and ongoing challenges in this area of PD research. 

Movement Disorders 2015

Clearance systems in the brain—implications for Alzheimer disease

Accumulation of toxic protein aggregates—amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles—is the pathological hallmark of Alzheimer disease (AD). Aβ accumulation has been hypothesized to result from an imbalance between Aβ production and clearance; indeed, Aβ clearance seems to be impaired in both early and late forms of AD. To develop efficient strategies to slow down or halt AD, it is critical to understand how Aβ is cleared from the brain. Extracellular Aβ deposits can be removed from the brain by various clearance systems, most importantly, transport across the blood–brain barrier. Findings from the past few years suggest that astroglial-mediated interstitial fluid (ISF) bulk flow, known as the glymphatic system, might contribute to a larger portion of extracellular Aβ (eAβ) clearance than previously thought. The meningeal lymphatic vessels, discovered in 2015, might provide another clearance route. Because these clearance systems act together to drive eAβ from the brain, any alteration to their function could contribute to AD. An understanding of Aβ clearance might provide strategies to reduce excess Aβ deposits and delay, or even prevent, disease onset. In this Review, we describe the clearance systems of the brain as they relate to proteins implicated in AD pathology, with the main focus on Aβ.

The autophagy-lysosomal pathway General concepts and clinical implications

Neurons, like other eukaryotic cells, utilize 2 major pathways for turning over dysfunctional proteins or organelles. One of them is the ubiquitin-proteasome system, which degrades short-lived proteins in the cytoplasm and nucleus and involves the covalent binding of ubiquitin molecules to the targeted protein, followed by its degradation by the proteasome. The second is the autophagy-lysosome pathway, which digests long-lived proteins, protein aggregates, stress RNA granules, and abnormal cytoplasmic organelles, including mitochondria. Autophagy (derived from the Greek words for self and eating) includes 3 major types: microautophagy, chaperone-mediated autophagy (CMA), and macroautophagy; all these pathways eventually lead to cargo degradation by the lysosome. Autophagy is a highly regulated process that involves sequential activation of protein complexes encoded by autophagic genes (ATG). Macroautophagy, the best-characterized form of autophagy, involves the formation of a particular organelle called autophagosome. There are 2 main types of macroautophagy. Basal macroautophagy is a quality control mechanism that prevents metabolic and oxidative stress by degrading aggregated or aggregate-prone proteins or damaged organelles, such as mitochondria. Starvation-induced autophagy occurs in response to nutrient deprivation and recycles macromolecules to provide substrates for energy metabolism. The mammalian (mechanistic) target of rapamycin complex 1 (mTORC1) constitutively inhibits starvation-induced and to a lesser extent basal autophagy. There is interaction between the ubiquitin and the autophagy systems, as ubiquitination serves as a signal for cargo-selective autophagy. There is also crosstalk between autophagy and apoptosis; in most cases, autophagy precedes and increases threshold for apoptosis in response to cellular stress. The fusion of the autophagosome with the lysosome is a critical final step of autophagy. Impairment of the autophagy-lysosomal system leads to accumulation of abnormal protein aggregates and dysfunctional mitochondria promoting oxidative stress and apoptosis. These are shared mechanisms of cell death in neurodegenerative disorders and lysosomal storage diseases. There are recent comprehensive reviews on these subjects  and only salient concepts are emphasized here.

Neurology 2015

Rapid progression of familial amyloidotic polyneuropathy A multinational natural history study

Objectives: To assess the association between severity of neuropathy and disease stage, and estimate the rate of neuropathy progression in a retrospective cross-sectional analysis of a multinational population of patients with familial amyloidotic polyneuropathy (FAP).
Methods: We characterize neuropathy severity and rate of progression in available patients with FAP in France, the United States, Portugal, and Italy. Neuropathy Impairment Scores (NIS), time from symptom onset to NIS measurement, polyneuropathy disability (PND) scores, FAP disease stage, and manual grip strength data were collected. We estimated neuropathy progression using Loess Fit and Gompertz Fit models.
Results: For the 283 patients studied (mean age, 56.4 years), intercountry genotypic variation in the transthyretin (TTR) mutation was observed, with the majority of patients in Portugal (92%) having early-onset Val30Met-FAP. There was also marked intercountry variation in PND score, FAP stage, and TTR stabilizer use. NIS was associated with PND score (NIS 10 and 99 for scores I and IV, respectively; p < 0.0001) and FAP stage (NIS 14 and 99 for stages 1 and 3, respectively; p < 0.0001). In addition, there was an association between NIS and TTR genotype. The estimated rate of NIS progression for a population with a median NIS of 32 was 14.3 points/year; the corresponding estimated rate for the modified NIS+7 is 17.8 points/year.
Conclusions: In a multinational population of patients with FAP, rapid neuropathic progression is observed and the severity of neuropathy is associated with functional scales of locomotion.

Neurology 2015

SQSTM1 splice site mutation in distal myopathy with rimmed vacuoles

Objective: To identify the genetic etiology and characterize the clinicopathologic features of a novel distal myopathy.
Methods: We performed whole-exome sequencing on a family with an autosomal dominant distal myopathy and targeted exome sequencing in 1 patient with sporadic distal myopathy, both with rimmed vacuolar pathology. We also evaluated the pathogenicity of identified mutations using immunohistochemistry, Western blot analysis, and expression studies.
Results: Sequencing identified a likely pathogenic c.1165+1 G>A splice donor variant in SQSTM1 in the affected members of 1 family and in an unrelated patient with sporadic distal myopathy. Affected patients had late-onset distal lower extremity weakness, myopathic features on EMG, and muscle pathology demonstrating rimmed vacuoles with both TAR DNA-binding protein 43 and SQSTM1 inclusions. The c.1165+1 G>A SQSTM1 variant results in the expression of 2 alternatively spliced SQSTM1 proteins: 1 lacking the C-terminal PEST2 domain and another lacking the C-terminal ubiquitin-associated (UBA) domain, both of which have distinct patterns of cellular and skeletal muscle localization.
Conclusions: SQSTM1 is an autophagic adaptor that shuttles aggregated and ubiquitinated proteins to the autophagosome for degradation via its C-terminal UBA domain. Similar to mutations in VCP, dominantly inherited mutations in SQSTM1 are now associated with rimmed vacuolar myopathy, Paget disease of bone, amyotrophic lateral sclerosis, and frontotemporal dementia. Our data further suggest a pathogenic connection between the disparate phenotypes.

Neurology 2015

Association of Cortical Lesion Burden on 7-T Magnetic Resonance Imaging With Cognition and Disability in Multiple Sclerosis

Importance  Cortical lesions (CLs) contribute to physical and cognitive disability in multiple sclerosis (MS). Accurate methods for visualization of CLs are necessary for future clinical studies and therapeutic trials in MS.
Objective  To evaluate the clinical relevance of measures of CL burden derived from high-field magnetic resonance imaging (MRI) in MS.
Design, Setting, and Participants  An observational clinical imaging study was conducted at an academic MS center. Participants included 36 individuals with MS (30 relapsing-remitting, 6 secondary or primary progressive) and 15 healthy individuals serving as controls. The study was conducted from March 10, 2010, to November 23, 2012, and analysis was performed from June 1, 2011, to September 30, 2014. Seven-Tesla MRI of the brain was performed with 0.5-mm isotropic resolution magnetization-prepared rapid acquisition gradient echo (MPRAGE) and whole-brain, 3-dimensional, 1.0-mm isotropic resolution magnetization–prepared, fluid-attenuated inversion recovery (MPFLAIR). Cortical lesions, seen as hypointensities on MPRAGE, were manually segmented. Lesions were classified as leukocortical, intracortical, or subpial. Images were segmented using the Lesion-TOADS (Topology-Preserving Anatomical Segmentation) algorithm, and brain structure volumes and white matter (WM) lesion volume were reported. Volumes were normalized to intracranial volume.
Main Outcomes and Measures  Physical disability was measured by the Expanded Disability Status Scale (EDSS). Cognitive disability was measured with the Minimal Assessment of Cognitive Function in MS battery.
Results  Cortical lesions were noted in 35 of 36 participants (97%), with a median of 16 lesions per participant (range, 0-99). Leukocortical lesion volume correlated with WM lesion volume (ρ = 0.50; P = .003) but not with cortical volume; subpial lesion volume inversely correlated with cortical volume (ρ = −0.36; P = .04) but not with WM lesion volume. Total CL count and volume, measured as median (range), were significantly increased in participants with EDSS scores of 5.0 or more vs those with scores less than 5.0 (count: 29 [11-99] vs 13 [0-51]; volume: 2.81 × 10−4 [1.30 × 10−4 to 7.90 × 10−4] vs 1.50 × 10−4 [0 to 1.01 × 10−3]) and in cognitively impaired vs unimpaired individuals (count: 21 [0-99] vs 13 [1-54]; volume: 3.51 × 10−4 [0 to 1.01 × 10−4] vs 1.19 × 10−4 [0 to 7.17 × 10−4]). Cortical lesion volume correlated with EDSS scores more robustly than did WM lesion volume (ρ = 0.59 vs 0.36). Increasing log[CL volume] conferred a 3-fold increase in the odds of cognitive impairment (odds ratio [OR], 3.36; 95% CI, 1.07-10.59; P = .04) after adjustment for age and sex and a 14-fold increase in odds after adjustment for WM lesion volume and atrophy (OR, 14.26; 95% CI, 1.06-192.37; P = .045). Leukocortical lesions had the greatest effect on cognition (OR for log [leukocortical lesion volume], 9.65; 95% CI, 1.70-54.59, P = .01).
Conclusions and Relevance  This study provides in vivo evidence that CLs are associated with cognitive and physical disability in MS and that leukocortical and subpial lesion subtypes have differing clinical relevance. Quantitative assessments of CL burden on high-field MRI may further our understanding of the development of disability and progression in MS and lead to more effective treatments.

JAMA Neurology 2015

sabato 25 luglio 2015

Clinical Features and Treatment Outcomes of Necrotizing Autoimmune Myopathy

Importance  Necrotizing autoimmune myopathy (NAM) is characterized pathologically by necrotic muscle fibers with absent or minimal inflammation. It is often accompanied by statin therapy, connective tissue diseases, cancer, and autoantibodies specific for signal recognition particle (SRP) or 3-hydroxy-3-methylglutaryl–coenzyme A reductase (HMGCR). Data are limited concerning differences among etiologic subgroups and treatment outcomes in NAM.
Objectives  To describe the clinical, serologic, and electrophysiologic characteristics of NAM, compare patient subgroups, and determine clinical outcome predictors.
Design, Setting, and Participants  We conducted a retrospective review of medical records for 63 adult Mayo Clinic patients assigned the clinical and histopathologic diagnosis of NAM from January 1, 2004, through December 31, 2013. Patients were stratified by presumed cause and autoantibody status.
Main Outcomes and Measures  Clinical, electrophysiologic, and pathologic characteristics were collected and compared among patient subgroups. Predictors of response to treatment were identified by univariate logistic regression.
Results  Lower extremity weakness predominated (46 [73%]). Distal weakness (26 [41%]), dysphagia (22 [35%]), and dyspnea (23 [37%]) were common. Twenty-two patients (35%) were receiving a statin medication at onset, 6 had cancer, and 3 had a connective tissue disease. The median creatine kinase level was 5326 U/L. In 13 patients (24%), SRP-IgG was detected, and in 17 patients (34%), HMGCR-IgG was detected (one-third of whom had not received statin medication). One patient was dual seropositive. Facial weakness was more common in SRP-IgG–positive patients. Myotonic discharges were more common in statin-associated NAM. Prednisone monotherapy was insufficient to control disease in most patients; 30 (90%) of 32 patients required 2 or more immunotherapeutic agents. Relapse occurred in 16 (55%) of 29 patients during immunosuppressant taper or discontinuation. Predictors of favorable outcome were male sex and use of 2 or more immunotherapeutic agents within 3 months of onset.
Conclusions and Relevance  Necrotizing autoimmune myopathy was idiopathic in half of this cohort with clinical and histopathologically defined disease. In the remainder, NAM was associated with statin medication, cancer, or connective tissue disease. One in 4 patients was SRP-IgG positive, and 1 in 3 was HMGCR-IgG positive. The disease was usually not controlled by corticosteroid monotherapy. Presentation, course, and outcomes did not differ significantly in seropositive, seronegative, and statin-associated cases. Early aggressive immunosuppressant therapy improved outcomes, and risk of relapse was high during medication dose reduction or withdrawal

JAMA Neurology 2015

Prevention of sporadic Alzheimer's disease: lessons learned from clinical trials and future directions

Summary

Interventions that have even quite modest effects at the individual level could drastically reduce the future burden of dementia associated with Alzheimer's disease at the population level. In the past three decades, both pharmacological and lifestyle interventions have been studied for the prevention of cognitive decline or dementia in randomised controlled trials of individuals mostly aged older than 50–55 years with or without risk factors for Alzheimer's disease. Several trials testing the effects of physical activity, cognitive training, or antihypertensive interventions showed some evidence of efficacy on a primary cognitive endpoint. However, most of these trials had short follow-up periods, and further evidence is needed to confirm effectiveness and establish the optimum design or dose of interventions and ideal target populations. Important innovations in ongoing trials include the development of multidomain interventions, and the use of biomarker or genetic inclusion criteria. Challenges include the use of adaptive trial designs, the development of standardised, sensitive outcome measures, and the need for interventions that can be implemented in resource-poor settings.

Lancet Neurology 2015

sabato 18 luglio 2015

Baseline and longitudinal grey matter changes in newly diagnosed Parkinson’s disease: ICICLE-PD study

Mild cognitive impairment in Parkinson’s disease is associated with progression to dementia (Parkinson’s disease dementia) in a majority of patients. Determining structural imaging biomarkers associated with prodromal Parkinson’s disease dementia may allow for the earlier identification of those at risk, and allow for targeted disease modifying therapies. One hundred and five non-demented subjects with newly diagnosed idiopathic Parkinson’s disease and 37 healthy matched controls had serial 3 T structural magnetic resonance imaging scans with clinical and neuropsychological assessments at baseline, which were repeated after 18 months. The Movement Disorder Society Task Force criteria were used to classify the Parkinson’s disease subjects into Parkinson’s disease with mild cognitive impairment (n = 39) and Parkinson’s disease with no cognitive impairment (n = 66). Freesurfer image processing software was used to measure cortical thickness and subcortical volumes at baseline and follow-up. We compared regional percentage change of cortical thinning and subcortical atrophy over 18 months. At baseline, cases with Parkinson’s disease with mild cognitive impairment demonstrated widespread cortical thinning relative to controls and atrophy of the nucleus accumbens compared to both controls and subjects with Parkinson’s disease with no cognitive impairment. Regional cortical thickness at baseline was correlated with global cognition in the combined Parkinson’s disease cohort. Over 18 months, patients with Parkinson’s disease with mild cognitive impairment demonstrated more severe cortical thinning in frontal and temporo-parietal cortices, including hippocampal atrophy, relative to those with Parkinson’s disease and no cognitive impairment and healthy controls, whereas subjects with Parkinson’s disease and no cognitive impairment showed more severe frontal cortical thinning compared to healthy controls. At baseline, Parkinson’s disease with no cognitive impairment converters showed bilateral temporal cortex thinning relative to the Parkinson’s disease with no cognitive impairment stable subjects. Although loss of both cortical and subcortical volume occurs in non-demented Parkinson’s disease, our longitudinal analyses revealed that Parkinson’s disease with mild cognitive impairment shows more extensive atrophy and greater percentage of cortical thinning compared to Parkinson’s disease with no cognitive impairment. In particular, an extension of cortical thinning in the temporo-parietal regions in addition to frontal atrophy could be a biomarker in therapeutic studies of mild cognitive impairment in Parkinson’s disease for progression towards dementia.

Brain 2015

Elevated mutant dynorphin A causes Purkinje cell loss and motor dysfunction in spinocerebellar ataxia type 23

Spinocerebellar ataxia type 23 is caused by mutations in PDYN, which encodes the opioid neuropeptide precursor protein, prodynorphin. Prodynorphin is processed into the opioid peptides, α-neoendorphin, and dynorphins A and B, that normally exhibit opioid-receptor mediated actions in pain signalling and addiction. Dynorphin A is likely a mutational hotspot for spinocerebellar ataxia type 23 mutations, and in vitro data suggested that dynorphin A mutations lead to persistently elevated mutant peptide levels that are cytotoxic and may thus play a crucial role in the pathogenesis of spinocerebellar ataxia type 23. To further test this and study spinocerebellar ataxia type 23 in more detail, we generated a mouse carrying the spinocerebellar ataxia type 23 mutation R212W in PDYN. Analysis of peptide levels using a radioimmunoassay shows that these PDYNR212W mice display markedly elevated levels of mutant dynorphin A, which are associated with climber fibre retraction and Purkinje cell loss, visualized with immunohistochemical stainings. The PDYNR212W mice reproduced many of the clinical features of spinocerebellar ataxia type 23, with gait deficits starting at 3 months of age revealed by footprint pattern analysis, and progressive loss of motor coordination and balance at the age of 12 months demonstrated by declining performances on the accelerating Rotarod. The pathologically elevated mutant dynorphin A levels in the cerebellum coincided with transcriptionally dysregulated ionotropic and metabotropic glutamate receptors and glutamate transporters, and altered neuronal excitability. In conclusion, thePDYNR212W mouse is the first animal model of spinocerebellar ataxia type 23 and our work indicates that the elevated mutant dynorphin A peptide levels are likely responsible for the initiation and progression of the disease, affecting glutamatergic signalling, neuronal excitability, and motor performance. Our novel mouse model defines a critical role for opioid neuropeptides in spinocerebellar ataxia, and suggests that restoring the elevated mutant neuropeptide levels can be explored as a therapeutic intervention

Brain 2015

Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder

Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy caused by mutations or rearrangements in PLP1. It presents in infancy with nystagmus, jerky head movements, hypotonia and developmental delay evolving into spastic tetraplegia with optic atrophy and variable movement disorders. A clinically similar phenotype caused by recessive mutations in GJC2 is known as Pelizaeus-Merzbacher-like disease. Both genes encode proteins associated with myelin. We describe three siblings of a consanguineous family manifesting the typical infantile-onset Pelizaeus-Merzbacher disease-like phenotype slowly evolving into a form of complicated hereditary spastic paraplegia with mental retardation, dysarthria, optic atrophy and peripheral neuropathy in adulthood. Magnetic resonance imaging and spectroscopy were consistent with a demyelinating leukodystrophy. Using genetic linkage and exome sequencing, we identified a homozygous missense c.399C>G; p.S133R mutation in MAG. This gene, previously associated with hereditary spastic paraplegia, encodes myelin-associated glycoprotein, which is involved in myelin maintenance and glia-axon interaction. This mutation is predicted to destabilize the protein and affect its tertiary structure. Examination of the sural nerve biopsy sample obtained in childhood in the oldest sibling revealed complete absence of myelin-associated glycoprotein accompanied by ill-formed onion-bulb structures and a relatively thin myelin sheath of the affected axons. Immunofluorescence, cell surface labelling, biochemical analysis and mass spectrometry-based proteomics studies in a variety of cell types demonstrated a devastating effect of the mutation on post-translational processing, steady state expression and subcellular localization of myelin-associated glycoprotein. In contrast to the wild-type protein, the p.S133R mutant was retained in the endoplasmic reticulum and was subjected to endoplasmic reticulum-associated protein degradation by the proteasome. Our findings identify involvement of myelin-associated glycoprotein in this family with a disorder affecting the central and peripheral nervous system, and suggest that loss of the protein function is responsible for the unique clinical phenotype.

Brain 2015

Permeability of the blood–brain barrier predicts conversion from optic neuritis to multiple sclerosis

Optic neuritis is an acute inflammatory condition that is highly associated with multiple sclerosis. Currently, the best predictor of future development of multiple sclerosis is the number of T2 lesions visualized by magnetic resonance imaging. Previous research has found abnormalities in the permeability of the blood–brain barrier in normal-appearing white matter of patients with multiple sclerosis and here, for the first time, we present a study on the capability of blood–brain barrier permeability in predicting conversion from optic neuritis to multiple sclerosis and a direct comparison with cerebrospinal fluid markers of inflammation, cellular trafficking and blood–brain barrier breakdown. To this end, we applied dynamic contrast-enhanced magnetic resonance imaging at 3 T to measure blood–brain barrier permeability in 39 patients with monosymptomatic optic neuritis, all referred for imaging as part of the diagnostic work-up at time of diagnosis. Eighteen healthy controls were included for comparison. Patients had magnetic resonance imaging and lumbar puncture performed within 4 weeks of onset of optic neuritis. Information on multiple sclerosis conversion was acquired from hospital records 2 years after optic neuritis onset. Logistic regression analysis showed that baseline permeability in normal-appearing white matter significantly improved prediction of multiple sclerosis conversion (according to the 2010 revised McDonald diagnostic criteria) within 2 years compared to T2 lesion count alone. There was no correlation between permeability and T2 lesion count. An increase in permeability in normal-appearing white matter of 0.1 ml/100 g/min increased the risk of multiple sclerosis 8.5 times whereas having more than nine T2 lesions increased the risk 52.6 times. Receiver operating characteristic curve analysis of permeability in normal-appearing white matter gave a cut-off of 0.13 ml/100 g/min, which predicted conversion to multiple sclerosis with a sensitivity of 88% and specificity of 72%. We found a significant correlation between permeability and the leucocyte count in cerebrospinal fluid as well as levels of CXCL10 and MMP9 in the cerebrospinal fluid. These findings suggest that blood–brain barrier permeability, as measured by magnetic resonance imaging, may provide novel pathological information as a marker of neuroinflammation related to multiple sclerosis, to some extent reflecting cellular permeability of the blood–brain barrier, whereas T2 lesion count may more reflect the length of the subclinical pre-relapse phase.

Brain 2015

Treatment of Cognitive Deficits in Genetic Disorders: A Systematic Review of Clinical Trials of Diet and Drug Treatments

Importance  Knowing the underlying etiology of intellectual disability in genetic disorders holds great promise for developing targeted treatments. Although successful preclinical studies and many positive clinical studies have been reported, it is unclear how many purported therapies have become established treatments. The quality of the clinical trials may be an important determinant for achieving clinical impact.
Objective  To evaluate clinical impact, strengths, and weaknesses of clinical trials of diet or drug treatments to improve cognitive function in patients with a genetic disorder.
Evidence Review  MEDLINE, EMBASE, PsycINFO, and Cochrane databases were searched from inception date to January 26, 2014, for clinical trials with cognitive outcomes in patients with genetic disorders. Outcome measures of randomized clinical trials (RCTs) were compared between trial registries and reports, and trials were evaluated for the quality of design using the Jadad score and Consolidated Standards of Reporting Trials (CONSORT) criteria.
Findings  We identified 169 trial reports of 80 treatments for 32 genetic disorders. Seventy-five trials (44.4%) reported potential efficacy, of which only 2 therapies are now established treatments, namely, dietary restriction for phenylketonuria and miglustat for Niemann-Pick disease type C. The median sample size for RCTs was 25 (range, 2-537). Only 30 of 107 RCTs (28.0%) had acceptable Jadad scores exceeding 3. Reporting of key CONSORT items was poor. Reported outcome measures matched preregistered outcome measures in trial registries in only 5 of 107 RCTs (4.7%).
Conclusions and Relevance  The number of trials in the field of cognitive genetic disorders is rapidly growing, but clinical impact has been limited because few drugs have become established treatments and the benefit of most drugs remains unclear. Most trials have small sample sizes and low quality of design. Predefinition of outcome measures, improved trial reporting and design, and international collaboration to increase recruitment are needed to unequivocally determine efficacy of drugs identified in preclinical research.

JAMA Nerology 2015

Incidental Cerebral Microbleeds and Cerebral Blood Flow in Elderly Individuals

Importance  Cerebral microbleeds (CMBs) are collections of blood breakdown products that are a common incidental finding in magnetic resonance imaging of elderly individuals. Cerebral microbleeds are associated with cognitive deficits, but the mechanism is unclear. Studies show that individuals with CMBs related to symptomatic cerebral amyloid angiopathy have abnormal vascular reactivity and cerebral blood flow (CBF), but, to our knowledge, abnormalities in cerebral blood flow have not been reported for healthy individuals with incidental CMBs.
Objective  To evaluate the association of incidental CMBs with resting-state CBF, cerebral metabolism, cerebrovascular disease, β-amyloid (Aβ), and cognition.
Design, Setting, and Participants  A cross-sectional study of 55 cognitively normal individuals with a mean (SD) age of 86.8 (2.7) years was conducted from May 1, 2010, to May 1, 2013, in an academic medical center in Pittsburgh; data analysis was performed between June 10, 2013, and April 9, 2015.
Interventions  3-Tesla magnetic resonance imaging was performed with susceptibility-weighted imaging or gradient-recalled echo to assess CMBs, arterial spin labeling for CBF, and T1- and T2-weighted imaging for atrophy, white matter hyperintensities, and infarcts. Positron emission tomography was conducted with fluorodeoxyglucose to measure cerebral metabolism and Pittsburgh compound B for fibrillar Aβ. Neuropsychological evaluation, including the Clinical Dementia Rating scale, was performed.
Main Outcomes and Measures  Magnetic resonance images were rated for the presence and location of CMBs. Lobar CMBs were subclassified as cortical or subcortical. Measurements of CBF, metabolism, and Aβ were compared with the presence and number of CMBs with voxelwise and region-of-interest analyses.
Results  The presence of cortical CMBs was associated with significantly reduced CBF in multiple regions on voxelwise and region-of-interest analyses (percentage difference in global CBF, −25.3%; P = .0003), with the largest reductions in the parietal cortex (−37.6%; P < .0001) and precuneus (−31.8%; P = .0006). Participants with any CMBs showed a nonsignificant trend toward reduced CBF. Participants with cortical CMBs had a significant association with greater prevalence of infarcts (24% vs 6%; P = .047) and demonstrated a trend to greater prevalence of deficits demonstrated on the Clinical Dementia Rating scale (45% vs 19%; P = .12). There was no difference in cortical amyloid (measured by Pittsburgh compound B positron emission tomography) between participants with and without CMBs (P = .60).
Conclusions and Relevance  In cognitively normal elderly individuals, incidental CMBs in cortical locations are associated with widespread reductions in resting-state CBF. Chronic hypoperfusion may put these people at risk for neuronal injury and neurodegeneration. Our results suggest that resting-state CBF is a marker of CMB-related small-vessel disease.

JAMA Neurology 2015

Treatment Outcomes With Rituximab in 100 Patients With Neuromyelitis Optica: Influence of FCGR3A Polymorphisms on the Therapeutic Response to Rituximab

Importance  Despite the increased use of rituximab therapy in neuromyelitis optica spectrum disorder (NMOSD), the overall efficacy and safety of long-term rituximab treatment in a large group of patients is uncertain. Furthermore, the identification of a predictor of rituximab response is an important issue for assessing the individual risk-benefit of therapy and making treatment decisions.
Objective  To assess the long-term clinical efficacy and safety of rituximab treatment in patients with NMOSD and the influence of fragment c gamma receptor 3A (FCGR3A) polymorphisms on rituximab response.
Design, Setting, and Participants  A retrospective review of 100 patients with relapsing NMOSD treated with rituximab for at least 6 months, from February 1, 2006, to January 31, 2015, at the institutional referral center. After induction therapy, a single infusion of rituximab (375 mg/m2) as maintenance therapy was administered whenever a reemergence of CD27+ memory B cells among peripheral blood mononuclear cells occurred. Using an allele-specific polymerase chain reaction–based method, the gene polymorphismsFCGR3A-V158F were assessed.
Main Outcomes and Measures  The primary end point was annualized relapse rate; disability (Expanded Disability Status Scale score), safety of rituximab treatment, event of insufficient memory B-cell depletion following rituximab, and time to retreatment of rituximab were secondary end points.
Results  By January 31, 2015, a total of 100 patients received repeated rituximab treatment during a median of 67 months. Of these patients, 41 had more than 5 years’ follow-up and 24 had more than 7 years’ follow-up. The annualized relapse rate was reduced significantly by 96% (mean [SD] annualized relapse rate of prerituximab vs postrituximab, 2.4 [2.0] vs 0.1 [0.6]) and disability improved or stabilized in 96% of patients. Rates of adverse events were generally stable. The FCGR3A-F allele was associated with a risk of relapse while receiving rituximab treatment (additive model, P < .05; recessive model, P = .04; maximum, P = .03) and insufficient memory B-cell depletion (additive model, P = .03; recessive model, P = .03; maximum,P = .03).
Conclusions and Relevance  Repeated rituximab treatment for NMOSD was observed in an increasing number of patients and increasing duration of exposure and maintained good efficacy and a safety profile consistent with previous reports. The finding of a relationship between FCGR3A genetic polymorphisms and rituximab response suggests the importance of individualized rituximab treatment strategies in NMOSD.

JAMA Neurology 2015