sabato 30 maggio 2015

Spinal cord MRI in multiple sclerosis—diagnostic, prognostic and clinical value

Multiple sclerosis (MS) is an inflammatory disorder of the CNS that affects both the brain and the spinal cord. MRI studies in MS focus more often on the brain than on the spinal cord, owing to the technical challenges in imaging this smaller, mobile structure. However, spinal cord abnormalities at disease onset have important implications for diagnosis and prognosis. Furthermore, later in the disease course, in progressive MS, myelopathy becomes the primary characteristic of the clinical presentation, and extensive spinal cord pathology—including atrophy, diffuse abnormalities and numerous focal lesions—is common. Recent spinal cord imaging studies have employed increasingly sophisticated techniques to improve detection and quantification of spinal cord lesions, and to elucidate their relationship with physical disability. Quantitative MRI measures of cord size and tissue integrity could be more sensitive to the axonal loss and other pathological processes in the spinal cord than is conventional MRI, putting quantitative MRI in a key role to elucidate the association between disability and spinal cord abnormalities seen in people with MS. In this Review, we summarize the most recent MS spinal cord imaging studies and discuss the new insights they have provided into the mechanisms of neurological impairment. Finally, we suggest directions for further and future research.

Nature Reviews Neurology 2015

Dissecting the phenotypes of Dravet syndrome by gene deletion

Neurological and psychiatric syndromes often have multiple disease traits, yet it is unknown how such multi-faceted deficits arise from single mutations. Haploinsufficiency of the voltage-gated sodium channel Nav1.1 causes Dravet syndrome, an intractable childhood-onset epilepsy with hyperactivity, cognitive deficit, autistic-like behaviours, and premature death. Deletion of Nav1.1 channels selectively impairs excitability of GABAergic interneurons. We studied mice having selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons. In brain slices, these deletions cause increased threshold for action potential generation, impaired action potential firing in trains, and reduced amplification of postsynaptic potentials in those interneurons. Selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons increases susceptibility to thermally-induced seizures, which are strikingly prolonged when Nav1.1 is deleted in both interneuron types. Mice with global haploinsufficiency of Nav1.1 display autistic-like behaviours, hyperactivity and cognitive impairment. Haploinsufficiency of Nav1.1 in parvalbumin-expressing interneurons causes autistic-like behaviours, but not hyperactivity, whereas haploinsufficiency in somatostatin-expressing interneurons causes hyperactivity without autistic-like behaviours. Heterozygous deletion in both interneuron types is required to impair long-term spatial memory in context-dependent fear conditioning, without affecting short-term spatial learning or memory. Thus, the multi-faceted phenotypes of Dravet syndrome can be genetically dissected, revealing synergy in causing epilepsy, premature death and deficits in long-term spatial memory, but interneuron-specific effects on hyperactivity and autistic-like behaviours. These results show that multiple disease traits can arise from similar functional deficits in specific interneuron types.

Brain 2015

Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia

Hereditary spastic paraplegias are heterogeneous neurological disorders characterized by a pyramidal syndrome with symptoms predominantly affecting the lower limbs. Some limited pyramidal involvement also occurs in patients with an autosomal recessive neurocutaneous syndrome due to ALDH18A1mutations. ALDH18A1 encodes delta-1-pyrroline-5-carboxylate synthase (P5CS), an enzyme that catalyses the first and common step of proline and ornithine biosynthesis from glutamate. Through exome sequencing and candidate gene screening, we report two families with autosomal recessive transmission of ALDH18A1 mutations, and predominant complex hereditary spastic paraplegia with marked cognitive impairment, without any cutaneous abnormality. More interestingly, we also identified monoallelic ALDH18A1 mutations segregating in three independent families with autosomal dominant pure or complex hereditary spastic paraplegia, as well as in two sporadic patients. Low levels of plasma ornithine, citrulline, arginine and proline in four individuals from two families suggested P5CS deficiency. Glutamine loading tests in two fibroblast cultures from two related affected subjects confirmed a metabolic block at the level of P5CS in vivo. Besides expanding the clinical spectrum of ALDH18A1-related pathology, we describe mutations segregating in an autosomal dominant pattern. The latter are associated with a potential trait biomarker; we therefore suggest including amino acid chromatography in the clinico-genetic work-up of hereditary spastic paraplegia, particularly in dominant cases, as the associated phenotype is not distinct from other causative genes.

Brain 2015

Standard vs Modified Antiplatelet Preparation for Preventing Thromboembolic Events in Patients With High On-Treatment Platelet Reactivity Undergoing Coil Embolization for an Unruptured Intracranial Aneurysm A Randomized Clinical Trial

Importance  Thromboembolism is the most common complication in coiling for an unruptured aneurysm and is frequent in patients with high on-treatment platelet reactivity (HTPR) who are prescribed a standard antiplatelet preparation for its prevention.
Objective  To evaluate the effect of a modified antiplatelet preparation compared with a standard preparation in patients with HTPR undergoing coiling.
Design, Setting, and Participants  A prospective randomized open-label active-control trial with blinded outcome assessment at the Seoul National University Bundang Hospital from May 27, 2013, to April 7, 2014. Patients with HTPR were randomly assigned (1 to 1) to the standard or modified preparation group. Patients without HTPR were assigned to the non-HTPR group. A total of 228 patients undergoing coiling for unruptured aneurysms were enrolled and allocated to the study, 126 in the HTPR group (63 to the standard preparation group and 63 to the modified preparation group) and 102 to the non-HTPR group. Intent-to-treat analysis was performed.
Interventions  The modified preparation (HTPR to aspirin, 300 mg of aspirin and 75 mg of clopidogrel bisulfate; and HTPR to clopidogrel, 200 mg of cilostazol added to the standard regimen) was performed before coiling in the modified preparation group. Standard preparation (100 mg of aspirin and 75 mg of clopidogrel) was maintained in the standard preparation and non-HTPR groups.
Main Outcomes and Measures  The primary outcome was a thromboembolic event defined as thromboembolism during coiling and a transient ischemic attack or ischemic stroke within 7 days after coiling. The principal secondary outcome was a bleeding complication according to Thrombolysis in Myocardial Infarction bleeding criteria within 30 days after coil embolization.
Results  The thromboembolic event rate was low in the modified preparation group (1 of 63 [1.6%]) compared with the standard preparation group (7 of 63 [11.1%]; adjusted risk difference, −11.7% [95% CI, −21.3% to −2.0%]; P = .02), which had a higher thromboembolic risk than the non-HTPR group (1 of 102 [1.0%]; adjusted risk difference, 8.6% [95% CI, 1.0% to 16.3%]; P = .03). All bleeding complications were of minimal grade according to Thrombolysis in Myocardial Infarction bleeding criteria. The bleeding rate was not different between the modified (6 of 63 [9.5%]) and standard (4 of 63 [6.3%]) preparation groups (adjusted risk difference, 5.6% [95% CI, −4.2% to 15.4%]; P = .26).
Conclusions and Relevance  Modified antiplatelet preparation for patients with HTPR compared with standard antiplatelet preparation reduced the thromboembolic event rate in coiling for an unruptured aneurysm without increasing bleeding.

JAMAA Neurology 2015

A Novel Mutation in ELOVL4 Leading to Spinocerebellar Ataxia (SCA) With the Hot Cross Bun Sign but Lacking Erythrokeratodermia A Broadened Spectrum of SCA34

Importance  Although mutations in 26 causative genes have been identified in the spinocerebellar ataxias (SCAs), the causative genes in a substantial number of families with SCA remain unidentified.
Objective  To identify the causative gene of SCA in 2 Japanese families with distinct neurological symptoms and radiological presentations.
Design, Setting, and Participants  Clinical genetic study at a referral center of 11 members from 2 Japanese families, which started in 1997.
Main Outcomes and Measures  Results of neurological examinations and radiological evaluations. The causative mutation was identified using genome-wide linkage analysis and next-generation sequencing.
Results  Affected members (9 of 11 members [81.8%]) showed slowly progressive cerebellar ataxia (all 9 members [100%]), ocular movement disturbance (all 9 members [100%]), and pyramidal tract signs (8 of 9 members [88.9%]) with an age at onset between the second and sixth decades of life. Besides cerebellar and pontine atrophy, magnetic resonance imaging of the brain revealed the hot cross bun sign (4 of 6 members [66.7%]), pontine midline linear hyperintensity (2 of 6 members [33.3%]), or high intensity in the middle cerebellar peduncle (1 of 6 members [16.7%]), which are all reminiscent of multiple system atrophy in tested patients. Using linkage analysis combined with exome and whole-genome sequencing, we identified a novel heterozygous mutation in the ELOVL fatty acid elongase 4 (ELOVL4) gene (c.736T>G, p.W246G) in both families. Haplotype analysis indicated that it was unlikely that these 2 Japanese families shared a common ancestor. Although a missense mutation in ELOVL4 (c.504G>C, p.L168F) was recently reported to be associated with SCA with erythrokeratodermia variabilis (SCA34) in a French-Canadian family, signs of erythrokeratodermia variabilis were absent in our families.
Conclusions and Relevance  Combined with the results of the family with SCA34 reported previously, this report confirms that mutations in ELOVL4 can cause dominantly inherited neurodegeneration severely affecting the cerebellum and brainstem. We should be aware that the presence of multiple system atrophy–like features on magnetic resonance imaging scans, together with cerebellar and brainstem atrophy, suggests SCA34, even when erythrokeratodermia variabilis is absent. The present study further broadened the spectrum of the clinical presentations of SCA34 associated with mutations in ELOVL4, which is involved in the biosynthesis of very long-chain fatty acids.

JAMA Neurology 2015

Mutations of GPR126 Are Responsible for Severe Arthrogryposis Multiplex Congenita.

Arthrogryposis multiplex congenita is defined by the presence of contractures across two or more major joints and results from reduced or absent fetal movement. Here, we present three consanguineous families affected by lethal arthrogryposis multiplex congenita. By whole-exome or targeted exome sequencing, it was shown that the probands each harbored a different homozygous mutation (one missense, one nonsense, and one frameshift mutation) in GPR126. GPR126 encodes G-protein-coupled receptor 126, which has been shown to be essential for myelination of axons in the peripheral nervous system in fish and mice. A previous study reported that Gpr126-/- mice have a lethal arthrogryposis phenotype. We have shown that the peripheral nerves in affected individuals from one family lack myelin basic protein, suggesting that this disease in affected individuals is due to defective myelination of the peripheral axons during fetal development. Previous work has suggested that autoproteolytic cleavage is important for activating GPR126 signaling, and our biochemical assays indicated that the missense substitution (p.Val769Glu [c.2306T>A]) impairs autoproteolytic cleavage of GPR126. Our data indicate that GPR126 is critical for myelination of peripheral nerves in humans. This study adds to the literature implicating defective axoglial function as a key cause of severe arthrogryposis multiplex congenita and suggests that GPR126 mutations should be investigated in individuals affected by this disorder.

AM J Hum Genet 2015

Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson's disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study

Background

High-frequency deep brain stimulation (DBS) with a single electrical source is effective for motor symptom relief in patients with Parkinson's disease. We postulated that a multiple-source, constant-current device that permits well defined distribution of current would lead to motor improvement in patients with Parkinson's disease.

Methods

We did a prospective, multicentre, non-randomised, open-label intervention study of an implantable DBS device (the VANTAGE study) at six specialist DBS centres at universities in six European countries. Patients were judged eligible if they were aged 21–75 years, had been diagnosed with bilateral idiopathic Parkinson's disease with motor symptoms for more than 5 years, had a Hoehn and Yahr score of 2 or greater, and had a Unified Parkinson's disease rating scale part III (UPDRS III) score in the medication-off state of more than 30, which improved by 33% or more after a levodopa challenge. Participants underwent bilateral implantation in the subthalamic nucleus of a multiple-source, constant-current, eight-contact, rechargeable DBS system, and were assessed 12, 26, and 52 weeks after implantation. The primary endpoint was the mean change in UPDRS III scores (assessed by site investigators who were aware of the treatment assignment) from baseline (medication-off state) to 26 weeks after first lead implantation (stimulation-on, medication-off state). This study is registered with ClinicalTrials.gov, number NCT01221948.

Findings

Of 53 patients enrolled in the study, 40 received a bilateral implant in the subthalamic nucleus and their data contributed to the primary endpoint analysis. Improvement was noted in the UPDRS III motor score 6 months after first lead implantation (mean 13·5 [SD 6·8], 95% CI 11·3–15·7) compared with baseline (37·4 [8·9], 34·5–40·2), with a mean difference of 23·8 (SD 10·6; 95% CI 20·3–27·3; p<0·0001). One patient died of pneumonia 24 weeks after implantation, which was judged to be unrelated to the procedure. 125 adverse events were reported, the most frequent of which were dystonia, speech disorder, and apathy. 18 serious adverse events were recorded, three of which were attributed to the device or procedure (one case each of infection, migration, and respiratory depression). All serious adverse events resolved without residual effects and stimulation remained on during the study.

Interpretation

The multiple-source, constant-current, eight-contact DBS system suppressed motor symptoms effectively in patients with Parkinson's disease, with an acceptable safety profile. Future trials are needed to investigate systematically the potential benefits of this system on postoperative outcome and its side-effects.

Lancet Neurology 2015

Gastrostomy in patients with amyotrophic lateral sclerosis (ProGas): a prospective cohort study

Background

Gastrostomy feeding is commonly used to support patients with amyotrophic lateral sclerosis who develop severe dysphagia. Although recommended by both the American Academy of Neurology and the European Federation of Neurological Societies, currently little evidence indicates the optimum method and timing for gastrostomy insertion. We aimed to compare gastrostomy insertion approaches in terms of safety and clinical outcomes.

Methods

In this large, longitudinal, prospective cohort study (ProGas), we enrolled patients with a diagnosis of definite, probable, laboratory supported, or possible amyotrophic lateral sclerosis who had agreed with their treating clinicians to undergo gastrostomy at 24 motor neuron disease care centres or clinics in the UK. The primary outcome was 30-day mortality after gastrostomy. This study was registered on the UK Clinical Research Network database, identification number 9923.

Findings

Between Nov 2, 2010, and Jan 31, 2014, 345 patients were recruited of whom 330 had gastrostomy. 163 (49%) patients underwent percutaneous endoscopic gastrostomy, 121 (37%) underwent radiologically inserted gastrostomy, 43 (13%) underwent per-oral image-guided gastrostomy, and three (1%) underwent surgical gastrostomy. 12 patients (4%, 95% CI 2·1–6·2) died within the first 30 days after gastrostomy: five (3%) of 163 after percutaneous endoscopic gastrostomy, four (3%) of 121 after radiologically inserted gastrostomy, and three (7%) of 43 after per-oral image-guided gastrostomy (p=0·46). Including repeat attempts in 14 patients, 21 (6%) of 344 gastrostomy procedures could not be completed: 11 (6%) of 171 percutaneous endoscopic gastrostomies, seven (6%) of 121 radiologically inserted gastrostomies, and three (6%) of 45 per-oral image-guided gastrostomies (p=0·947).

Interpretation

The three methods of gastrostomy seemed to be as safe as each other in relation to survival and procedural complications. In the absence of data from randomised trials, our findings could inform clinicians and patients in reaching decisions about gastrostomy and will stimulate further research into the nutritional management in patients with amyotrophic lateral sclerosis.

Lancet Neurology 2015

Effect of comorbidity on mortality in multiple sclerosis

Objective: We aimed to compare survival in the multiple sclerosis (MS) population with a matched cohort from the general population, and to evaluate the association of comorbidity with survival in both populations.
Methods: Using population-based administrative data, we identified 5,797 persons with MS and 28,807 controls matched on sex, year of birth, and region. We estimated annual mortality rates. Using Cox proportional hazards regression, we evaluated the association between comorbidity status and mortality, stratifying by birth cohort, and adjusting for sex, socioeconomic status, and region. We compared causes of death between populations.
Results: Median survival from birth in the MS population was 75.9 years vs 83.4 years in the matched population. MS was associated with a 2-fold increased risk of death (adjusted hazard ratio 2.40; 95% confidence interval: 2.24–2.58). Several comorbidities were associated with increased hazard of death in both populations, including diabetes, ischemic heart disease, depression, anxiety, and chronic lung disease. The magnitude of the associations of mortality with chronic lung disease, diabetes, hypertension, and ischemic heart disease was lower in the MS population than the matched population. The most common causes of death in the MS population were diseases of the nervous system and diseases of the circulatory system. Mortality rates due to infectious diseases and diseases of the respiratory system were higher in the MS population.
Conclusion: In the MS population, survival remained shorter than expected. Within the MS population, comorbidity was associated with increased mortality risk. However, comorbidity did not preferentially increase mortality risk in the MS population as compared with controls.

Neurology 2015

Longitudinal patient-oriented outcomes in neuropathy Importance of early detection and falls

Objective: To evaluate longitudinal patient-oriented outcomes in peripheral neuropathy over a 14-year time period including time before and after diagnosis.
Methods: The 1996–2007 Health and Retirement Study (HRS)–Medicare Claims linked database identified incident peripheral neuropathy cases (ICD-9 codes) in patients ≥65 years. Using detailed demographic information from the HRS and Medicare claims, a propensity score method identified a matched control group without neuropathy. Patient-oriented outcomes, with an emphasis on self-reported falls, pain, and self-rated health (HRS interview), were determined before and after neuropathy diagnosis. Generalized estimating equations were used to assess differences in longitudinal outcomes between cases and controls.
Results: We identified 953 peripheral neuropathy cases and 953 propensity-matched controls. The mean (SD) age was 77.4 (6.7) years for cases, 76.9 (6.6) years for controls, and 42.1% had diabetes. Differences were detected in falls 3.0 years before neuropathy diagnosis (case vs control; 32% vs 25%, p = 0.008), 5.0 years for pain (36% vs 27%, p = 0.002), and 5.0 years for good to excellent self-rated health (61% vs 74%, p < 0.0001). Over time, the proportion of fallers increased more rapidly in neuropathy cases compared to controls (p = 0.002), but no differences in pain (p = 0.08) or self-rated health (p = 0.9) were observed.
Conclusions: In older persons, differences in falls, pain, and self-rated health can be detected 3–5 years prior to peripheral neuropathy diagnosis, but only falls deteriorates more rapidly over time in neuropathy cases compared to controls. Interventions to improve early peripheral neuropathy detection are needed, and future clinical trials should incorporate falls as a key patient-oriented outcome.

Neurology 2015

Switching from natalizumab to fingolimod A randomized, placebo-controlled study in RRMS

Objective: To investigate the effect of different natalizumab washout (WO) periods on recurrence of MRI and clinical disease activity in patients switching from natalizumab to fingolimod.
Methods: In this multicenter, double-blind, placebo-controlled trial (TOFINGO), patients with relapsing-remitting multiple sclerosis (RRMS) were randomized 1:1:1 to 8-, 12-, or 16-week WO followed by fingolimod treatment over 32 weeks from last natalizumab infusion (LNI). Brain MRI was performed at baseline and weeks 8, 12, 16, 20, and 24.
Results: Of 142 enrolled and randomized patients, 112 (78.9%) completed the study (8 weeks, n = 41/50; 12 weeks, n = 31/42; 16 weeks, n = 40/50). Number (95% confidence interval [CI]) of active (new/newly enlarged T2) lesions from LNI through 8 weeks of fingolimod treatment (primary outcome) was similar in the 8-week (2.1 [1.7–2.6]) and 12-week WO groups (1.7 [1.3–2.2]) and higher in the 16-week WO group (8.2 [7.3–9.1]). During the WO period only, the number (95% CI) of active lesions increased with increasing WO duration (8 weeks, 0.4 [0.2–0.6]; 12 weeks, 2.1 [1.6–2.6]; 16 weeks, 3.6 [3.0–4.2]). Over the 24 weeks from LNI, gadolinium-enhancing T1 lesion counts were lower in the 8-week WO group (14.1 [5.67–22.53]) than in the 12-week (21.3 [1.41–41.19]) or 16-week (18.5 [8.40–28.60]) WO groups. More patients were relapse-free in the 8-week (88%) and 12-week (91%) WO groups than the 16-week WO group (84%). Sixty-eight percent of patients experienced adverse events (mostly mild/moderate), with similar incidence across groups. No unusually severe relapses or opportunistic infections occurred.
Conclusions: Initiating fingolimod therapy 8–12 weeks after natalizumab discontinuation is associated with a lower risk of MRI and clinical disease reactivation than initiation after 16-week WO.
Classification of evidence: This study provides Class II evidence that for patients with RRMS switching from natalizumab to fingolimod, shorter natalizumab WO periods are associated with less MRI disease activity than are longer WO periods.

Neurology 2015

sabato 23 maggio 2015

Toward stem cell-based phenotypic screens for neurodegenerative diseases

In the absence of a single preventive or disease-modifying strategy, neurodegenerative diseases are becoming increasingly prevalent in our ageing population. The mechanisms underlying neurodegeneration are poorly understood, making the target-based drug screening strategies that are employed by the pharmaceutical industry fraught with difficulty. However, phenotypic screening in neurons and glia derived from patients is now conceivable through unprecedented developments in reprogramming, transdifferentiation, and genome editing. We outline progress in this nascent field, but also consider the formidable hurdles to identifying robust, disease-relevant and screenable cellular phenotypes in patient-derived cells. We illustrate how analysis in the simple baker's yeast cell Saccharaomyces cerevisiae is driving discovery in patient-derived neurons, and how approaches in this model organism can establish a paradigm to guide the development of stem cell-based phenotypic screens.

Nature Reviews Neurology 2015

Spinal muscular atrophy—recent therapeutic advances for an old challenge

In the past decade, improved understanding of spinal muscular atrophy (SMA) aetiopathogenesis has brought us to a historical turning point: we are at the verge of development of disease-modifying treatments for this hitherto incurable disease. The increasingly precise delineation of molecular targets within the survival of motor neuron (SMN) gene locus has led to the development of promising therapeutic strategies. These novel avenues in treatment for SMA include gene therapy, molecular therapy with antisense oligonucleotides, and small molecules that aim to increase expression of SMN protein. Stem cell studies of SMA have provided an in vitro model for SMA, and stem cell transplantation could be used as a complementary strategy with a potential to treat the symptomatic phases of the disease. Here, we provide an overview of established data and novel insights into SMA pathogenesis, including discussion of the crucial function of the SMN protein. Preclinical evidence and recent advances from ongoing clinical trials are thoroughly reviewed. The final remarks are dedicated to future clinical perspectives in this rapidly evolving field, with a broad discussion on the comparison between the outlined therapeutic approaches and the remaining open questions.

Nature Reviews Neurology 2015

Improving response inhibition systems in frontotemporal dementia with citalopram

Disinhibition is a cardinal feature of the behavioural variant of frontotemporal dementia, presenting as impulsive and impetuous behaviours that are often difficult to manage. The options for symptomatic treatments are limited, but a potential target for therapy is the restoration of serotonergic function, which is both deficient in behavioural variant frontotemporal dementia and closely associated with inhibitory control. Based on preclinical studies and psychopharmacological interventions in other disorders, we predicted that inhibition would be associated with the right inferior frontal gyrus and dependent on serotonin. Using magnetoencephalography and electroencephalography of a Go-NoGo paradigm, we investigated the neural basis of behavioural disinhibition in behavioural variant frontotemporal dementia and the effect of selective serotonin reuptake inhibition on the neural systems for response inhibition. In a randomized double-blinded placebo-controlled crossover design study, 12 patients received either a single 30 mg dose of citalopram or placebo. Twenty age-matched healthy controls underwent the same magnetoencephalography/electroencephalography protocol on one session without citalopram, providing normative data for this task. In the control group, successful NoGo trials evoked two established indices of successful response inhibition: the NoGo-N2 and NoGo-P3. Both of these components were significantly attenuated by behavioural variant frontotemporal dementia. Cortical sources associated with successful inhibition in control subjects were identified in the right inferior frontal gyrus and anterior temporal lobe, which have been strongly associated with behavioural inhibition in imaging and lesion studies. These sources were impaired by behavioural variant frontotemporal dementia. Critically, citalopram enhanced the NoGo-P3 signal in patients, relative to placebo treatment, and increased the evoked response in the right inferior frontal gyrus. Voxel-based morphometry confirmed significant atrophy of inferior frontal gyrus, alongside insular, orbitofrontal and temporal cortex in our patient cohort. Together, these data suggest that the dysfunctional prefrontal cortical systems underlying response inhibition deficits in behavioural variant frontotemporal dementia can be partially restored by increasing serotonergic neurotransmission. The results support a translational neuroscience approach to impulsive neurological disorders and indicate the potential for symptomatic treatment of behavioural variant frontotemporal dementia including serotonergic strategies to improve disinhibition.

Brain 2015

Risk of Neuropathy Among 28 232 Patients With Biopsy-Verified Celiac Disease

Importance  Earlier research on celiac disease (CD) and neuropathy has been hampered by the use of inpatient data, low study power, and lack of neuropathic characteristics.
Objective  To examine the relative risk and absolute risk of developing neuropathy in a nationwide population-based sample of patients with biopsy-verified CD.
Design, Setting, and Participants  Between October 27, 2006, and February 12, 2008, we collected data on small-intestinal biopsies performed at Sweden’s 28 pathology departments between June 16, 1969, and February 4, 2008. We compared the risk of neuropathy in 28 232 patients with CD (villous atrophy, Marsh 3) with that of 139 473 age- and sex-matched controls. Cox proportional hazards regression estimated hazard ratios (HRs) and 95% CIs for neuropathy defined according to relevant International Classification of Diseases codes in the Swedish National Patient Register (consisting of both inpatient and outpatient data).
Main Outcomes and Measures  Neuropathy in patients with biopsy-verified CD.
Results  Celiac disease was associated with a 2.5-fold increased risk of later neuropathy (95% CI, 2.1-3.0;P < .001). We also found an increased risk (with results reported as HRs [95% CIs]) of chronic inflammatory demyelinating neuropathy (2.8; 1.6-5.1; P = .001), autonomic neuropathy (4.2; 1.4-12.3; P = .009), and mononeuritis multiplex (7.6; 1.8-32.4; P = .006), but no association between CD and acute inflammatory demyelinating polyneuropathy (0.8; 0.3-2.1; P = .68).
Conclusions and Relevance  We found an increased risk of neuropathy in patients with CD. This statistically significant association in a population-based sample suggests that CD screening should be completed in patients with neuropathy.

JAMA Neurology 2015

Imaging Correlates of Memory and Concussion History in Retired National Football League Athletes

Importance  To our knowledge, this is the first study to show an association between concussion, cognition, and anatomical structural brain changes across the age spectrum in former National Football League athletes.
Objective  To assess the relationship of hippocampal volume, memory performance, and the influence of concussion history in retired National Football League athletes with and without mild cognitive impairment (MCI).
Design, Setting, and Participants  This retrospective cohort study assessed differences between groups, mean hippocampal volumes, and memory performance by computing age quintiles based on group-specific linear regression models corrected for multiple comparisons for both athletes and control participants. The study was conducted starting in November 2010 and is ongoing at a research center in the northern region of Texas. This current analysis was conducted from October 9, 2013, to August 21, 2014. Participants included 28 retired National Football League athletes, 8 of whom had MCI and a history of concussion, 21 cognitively healthy control participants, and 6 control participants with MCI without concussion.
Main Outcomes and Measures  Hippocampal volume, age, California Verbal Learning Test scores, and the number of grade 3 (G3) concussions. In addition, the number of games played was examined as an objective variable pertaining to football history.
Results  The mean (SD) age was 58.1 (13) years for the 28 former athletes and 59.0 (12) years for the 27 control participants. Retired athletes with concussion history but without cognitive impairment had normal but significantly lower California Verbal Learning Test scores compared with control participants (mean [SD], 52.5 [8] vs 60.24 [7]; P = .002); those with a concussion history and MCI performed worse (mean [SD], 37 [8.62]) compared with both control participants (P < .001) and athletes without memory impairment (P < .001). Among the athletes, 17 had a G3 concussion and 11 did not. Older retired athletes with at least 1 G3 concussion had significantly smaller bilateral hippocampal volumes compared with control participants at the 40th age percentile (left, P = .04; right, P = .03), 60th percentile (left, P = .009; right, P = .01), and 80th percentile (left, P = .001; right, P = .002) and a smaller right hippocampal volume compared with athletes without a G3 concussion at the 40th percentile (P = .03), 60th percentile (P = .02), and 80th percentile (P = .02). Athletes with a history of G3 concussion were more likely to have MCI (7 of 7) compared with retired athletes without a history of G3 concussion (1 of 5) older than 63 years (P = .01). In addition, the left hippocampal volume in retired athletes with MCI and concussion was significantly smaller compared with control participants with MCI (P = .03).
Conclusion and Relevance  Prior concussion that results in loss of consciousness is a risk factor for increased hippocampal atrophy and the development of MCI. In individuals with MCI, hippocampal volume loss appears greater among those with a history of concussion.
JAMA Neurology 2015

Clinical Features of Alzheimer Disease With and Without Lewy Bodies

Importance  Lewy bodies are a frequent coexisting pathology in late-onset Alzheimer disease (AD). Previous studies have examined the contribution of Lewy bodies to the clinical phenotype of late-onset AD with variable findings.
Objective  To determine whether the presence of Lewy body pathology influences the clinical phenotype and progression of symptoms in longitudinally assessed participants with AD.
Design, Setting, and Participants  Retrospective clinical and pathological cohort study of 531 deceased participants who met the neuropathologic criteria for intermediate or high likelihood of AD according to the National Institute on Aging–Ronald Reagan Institute guidelines for the neuropathologic diagnosis of AD. All participants had a clinical assessment within 2 years of death. The data were obtained from 34 AD centers maintained by the National Alzheimer Coordinating Center and spanned from September 12, 2005, to April 30, 2013.
Exposures  Standardized neuropathologic assessment and then brain autopsy after death.
Main Outcomes and Measures  Clinical and neuropsychiatric test scores.
Results  The mean (SD) age at death was statistically significantly younger for participants who had AD with Lewy bodies (77.9 [9.5] years) than for participants who had AD without Lewy bodies (80.2 [11.1] years) (P = .01). The mean (SD) age at onset of dementia symptoms was also younger for participants who had AD with Lewy bodies (70.0 [9.9] years) than for participants who had AD without Lewy bodies (72.2 [12.3] years) (P = .03). More men than women had AD with Lewy bodies (P = .01). The frequency of having at least 1 APOE ε4 allele was higher for participants who had AD with Lewy bodies than for participants who had AD without Lewy bodies (P = .03). After adjusting for age, sex, education, frequency of plaques (neuritic and diffuse), and tangle stage, we found that participants who had AD with Lewy bodies had a statistically significantly higher mean (SD) Neuropsychiatric Inventory Questionnaire score (6.59 [1.44] [95% CI, 3.75-9.42] vs 5.49 [1.39] [95% CI, 2.76-8.23]; P = .04) and a statistically significantly higher mean (SD) Unified Parkinson Disease Rating Scale motor score (0.81 [0.18] [95% CI, 0.45-1.17] vs 0.54 [0.18] [95% CI, 0.19-0.88]; P < .001) than did participants who had AD without Lewy bodies.
Conclusions and Relevance  Participants with both AD and Lewy body pathology have a clinical phenotype that may be distinguished from AD alone. The frequency of Lewy bodies in AD and the association of Lewy bodies with the APOE ε4 allele suggest potential common mechanisms for AD and Lewy body pathologies.
JAMA Neurology 2015