sabato 27 giugno 2015

Pioglitazone in early Parkinson's disease: a phase 2, multicentre, double-blind, randomised trial



A systematic assessment of potential disease-modifying compounds for Parkinson's disease concluded that pioglitazone could hold promise for the treatment of patients with this disease. We assessed the effect of pioglitazone on the progression of Parkinson's disease in a multicentre, double-blind, placebo-controlled, futility clinical trial.


Participants with the diagnosis of early Parkinson's disease on a stable regimen of 1 mg/day rasagiline or 10 mg/day selegiline were randomly assigned (1:1:1) to 15 mg/day pioglitazone, 45 mg/day pioglitazone, or placebo. Investigators were masked to the treatment assignment. Only the statistical centre and the central pharmacy knew the treatment name associated with the randomisation number. The primary outcome was the change in the total Unified Parkinson's Disease Rating Scale (UPDRS) score between the baseline and 44 weeks, analysed by intention to treat. The primary null hypothesis for each dose group was that the mean change in UPDRS was 3 points less than the mean change in the placebo group. The alternative hypothesis (of futility) was that pioglitazone is not meaningfully different from placebo. We rejected the null if there was significant evidence of futility at the one-sided alpha level of 0·10. The study is registered, number NCT01280123.


210 patients from 35 sites in the USA were enrolled between May 10, 2011, and July 31, 2013. The primary analysis included 72 patients in the 15 mg group, 67 in the 45 mg group, and 71 in the placebo group. The mean total UPDRS change at 44 weeks was 4·42 (95% CI 2·55–6·28) for 15 mg pioglitazone, 5·13 (95% CI 3·17–7·08) for 45 mg pioglitazone, and 6·25 (95% CI 4·35–8·15) for placebo (higher change scores are worse). The mean difference between the 15 mg and placebo groups was −1·83 (80% CI −3·56 to −0·10) and the null hypothesis could not be rejected (p=0·19). The mean difference between the 45 mg and placebo groups was −1·12 (80% CI −2·93 to 0·69) and the null hypothesis was rejected in favour of futility (p=0·09). Planned sensitivity analyses of the primary outcome, using last value carried forward (LVCF) to handle missing data and using the completers' only sample, suggested that the 15 mg dose is also futile (p=0·09 for LVCF, p=0·09 for completers) but failed to reject the null hypothesis for the 45 mg dose (p=0·12 for LVCF, p=0·19 for completers). Six serious adverse events occurred in the 15 mg group, nine in the 45 mg group, and three in the placebo group; none were thought to be definitely or probably related to the study interventions.


These findings suggest that pioglitazone at the doses studied here is unlikely to modify progression in early Parkinson's disease. Further study of pioglitazone in a larger trial in patients with Parkinson's disease is not recommended.

Lancet Neurology 2015

Endovascular stent thrombectomy: the new standard of care for large vessel ischaemic stroke


Results of initial randomised trials of endovascular treatment for ischaemic stroke, published in 2013, were neutral but limited by the selection criteria used, early-generation devices with modest efficacy, non-consecutive enrolment, and treatment delays.

Recent developments

In the past year, six positive trials of endovascular thrombectomy for ischaemic stroke have provided level 1 evidence for improved patient outcome compared with standard care. In most patients, thrombectomy was performed in addition to thrombolysis with intravenous alteplase, but benefits were also reported in patients ineligible for alteplase treatment. Despite differences in the details of eligibility requirements, all these trials required proof of major vessel occlusion on non-invasive imaging and most used some imaging technique to exclude patients with a large area of irreversibly injured brain tissue. The results indicate that modern thrombectomy devices achieve faster and more complete reperfusion than do older devices, leading to improved clinical outcomes compared with intravenous alteplase alone. The number needed to treat to achieve one additional patient with independent functional outcome was in the range of 3·2–7·1 and, in most patients, was in addition to the substantial efficacy of intravenous alteplase. No major safety concerns were noted, with low rates of procedural complications and no increase in symptomatic intracerebral haemorrhage.

Where next?

Thrombectomy benefits patients across a range of ages and levels of clinical severity. A planned meta-analysis of individual patient data might clarify effects in under-represented subgroups, such as those with mild initial stroke severity or elderly patients. Imaging-based selection, used in some of the recent trials to exclude patients with large areas of irreversible brain injury, probably contributed to the proportion of patients with favourable outcomes. The challenge is how best to implement imaging in clinical practice to maximise benefit for the entire population and to avoid exclusion of patients with smaller yet clinically important potential to benefit. Although favourable imaging identifies patients who might benefit despite long delays from symptom onset to treatment, the proportion of patients with favourable imaging decreases with time. Health systems therefore need to be reorganised to deliver treatment as quickly as possible to maximise benefits. On the basis of available trial data, intravenous alteplase remains the initial treatment for all eligible patients within 4·5 h of stroke symptom onset. Those patients with major vessel occlusion should, in parallel, proceed to endovascular thrombectomy immediately rather than waiting for an assessment of response to alteplase, because minimising time to reperfusion is the ultimate aim of treatment.
Lancet Neurology 2015

Paraneoplastic Neurological Syndromes and Glutamic Acid Decarboxylase Antibodies

Importance  Little is known of glutamic acid decarboxylase antibodies (GAD-abs) in the paraneoplastic context. Clinical recognition of such cases will lead to prompt tumor diagnosis and appropriate treatment.
Objective  To report the clinical and immunological features of patients with paraneoplastic neurological syndromes (PNS) and GAD-abs.
Design, Setting, and Participants  Retrospective case series study and immunological investigations conducted in February 2014 in a center for autoimmune neurological disorders. Fifteen cases with GAD65-abs evaluated between 1995 and 2013 who fulfilled criteria of definite or possible PNS without concomitant onconeural antibodies were included in this study.
Main Outcomes and Measures  Analysis of the clinical records of 15 patients and review of 19 previously reported cases. Indirect immunofluorescence with rat hippocampal neuronal cultures and cell-based assays with known neuronal cell-surface antigens were used. One hundred six patients with GAD65-abs and no cancer served as control individuals.
Results  Eight of the 15 patients with cancer presented as classic paraneoplastic syndromes (5 limbic encephalitis, 1 paraneoplastic encephalomyelitis, 1 paraneoplastic cerebellar degeneration, and 1 opsoclonus-myoclonus syndrome). When compared with the 106 non-PNS cases, those with PNS were older (median age, 60 years vs 48 years; P = .03), more frequently male (60% vs 13%; P < .001), and had more often coexisting neuronal cell-surface antibodies, mainly against γ-aminobutyric acid receptors (53% vs 11%; P < .001). The tumors more frequently involved were lung (n = 6) and thymic neoplasms (n = 4). The risk for an underlying tumor was higher if the presentation was a classic PNS, if it was different from stiff-person syndrome or cerebellar ataxia (odds ratio, 10.5; 95% CI, 3.2-34.5), or if the patient had coexisting neuronal cell-surface antibodies (odds ratio, 6.8; 95% CI, 1.1-40.5). Compared with the current series, the 19 previously reported cases had more frequent stiff-person syndrome (74% vs 13%; P = .001) and better responses to treatment (79% vs 27%; P = .005). Predictors of improvement in the 34 patients (current and previously reported) included presentation with stiff-person syndrome and the presence of a thymic tumor.
Conclusions and Relevance  Patients with GAD-abs must be screened for an underlying cancer if they have clinical presentations different from those typically associated with this autoimmunity or develop classic PNS. The risk for cancer increases with age, male sex, and the presence of coexisting neuronal cell-surface antibodies.

JAMA Neurology 2015

The Wernicke conundrum and the anatomy of language comprehension in primary progressive aphasia

Wernicke’s aphasia is characterized by severe word and sentence comprehension impairments. The location of the underlying lesion site, known as Wernicke’s area, remains controversial. Questions related to this controversy were addressed in 72 patients with primary progressive aphasia who collectively displayed a wide spectrum of cortical atrophy sites and language impairment patterns. Clinico-anatomical correlations were explored at the individual and group levels. These analyses showed that neuronal loss in temporoparietal areas, traditionally included within Wernicke’s area, leave single word comprehension intact and cause inconsistent impairments of sentence comprehension. The most severe sentence comprehension impairments were associated with a heterogeneous set of cortical atrophy sites variably encompassing temporoparietal components of Wernicke’s area, Broca’s area, and dorsal premotor cortex. Severe comprehension impairments for single words, on the other hand, were invariably associated with peak atrophy sites in the left temporal pole and adjacent anterior temporal cortex, a pattern of atrophy that left sentence comprehension intact. These results show that the neural substrates of word and sentence comprehension are dissociable and that a circumscribed cortical area equally critical for word and sentence comprehension is unlikely to exist anywhere in the cerebral cortex. Reports of combined word and sentence comprehension impairments in Wernicke’s aphasia come almost exclusively from patients with cerebrovascular accidents where brain damage extends into subcortical white matter. The syndrome of Wernicke’s aphasia is thus likely to reflect damage not only to the cerebral cortex but also to underlying axonal pathways, leading to strategic cortico-cortical disconnections within the language network. The results of this investigation further reinforce the conclusion that the left anterior temporal lobe, a region ignored by classic aphasiology, needs to be inserted into the language network with a critical role in the multisynaptic hierarchy underlying word comprehension and object naming.

Brain 2015

Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions

Cortical superficial siderosis describes a distinct pattern of blood-breakdown product deposition limited to cortical sulci over the convexities of the cerebral hemispheres, sparing the brainstem, cerebellum and spinal cord. Although cortical superficial siderosis has many possible causes, it is emerging as a key feature of cerebral amyloid angiopathy, a common and important age-related cerebral small vessel disorder leading to intracerebral haemorrhage and dementia. In cerebral amyloid angiopathy cohorts, cortical superficial siderosis is associated with characteristic clinical symptoms, including transient focal neurological episodes; preliminary data also suggest an association with a high risk of future intracerebral haemorrhage, with potential implications for antithrombotic treatment decisions. Thus, cortical superficial siderosis is of relevance to neurologists working in neurovascular, memory and epilepsy clinics, and neurovascular emergency services, emphasizing the need for appropriate blood-sensitive magnetic resonance sequences to be routinely acquired in these clinical settings. In this review we focus on recent developments in neuroimaging and detection, aetiology, prevalence, pathophysiology and clinical significance of cortical superficial siderosis, with a particular emphasis on cerebral amyloid angiopathy. We also highlight important areas for future investigation and propose standards for evaluating cortical superficial siderosis in research studies.

Brain 2015

Glucocerebrosidase activity in Parkinson’s disease with and without GBA mutations

Glucocerebrosidase (GBA) mutations have been associated with Parkinson’s disease in numerous studies. However, it is unknown whether the increased risk of Parkinson’s disease in GBA carriers is due to a loss of glucocerebrosidase enzymatic activity. We measured glucocerebrosidase enzymatic activity in dried blood spots in patients with Parkinson's disease (n = 517) and controls (n = 252) with and without GBA mutations. Participants were recruited from Columbia University, New York, and fully sequenced for GBA mutations and genotyped for the LRRK2 G2019S mutation, the most common autosomal dominant mutation in the Ashkenazi Jewish population. Glucocerebrosidase enzymatic activity in dried blood spots was measured by a mass spectrometry-based assay and compared among participants categorized by GBA mutation status and Parkinson’s disease diagnosis. Parkinson’s disease patients were more likely than controls to carry the LRRK2 G2019S mutation (n = 39, 7.5% versus n = 2, 0.8%, P < 0.001) and GBA mutations or variants (seven homozygotes and compound heterozygotes and 81 heterozygotes, 17.0% versus 17 heterozygotes, 6.7%, P < 0.001). GBA homozygotes/compound heterozygotes had lower enzymatic activity than GBA heterozygotes (0.85 µmol/l/h versus 7.88 µmol/l/h,P < 0.001), and GBA heterozygotes had lower enzymatic activity than GBA and LRRK2 non-carriers (7.88 µmol/l/h versus 11.93 µmol/l/h, P < 0.001). Glucocerebrosidase activity was reduced in heterozygotes compared to non-carriers when each mutation was compared independently (N370S, P <0.001; L444P, P < 0.001; 84GG, P = 0.003; R496H, P = 0.018) and also reduced in GBA variants associated with Parkinson’s risk but not with Gaucher disease (E326K, P = 0.009; T369M, P < 0.001). When all patients with Parkinson’s disease were considered, they had lower mean glucocerebrosidase enzymatic activity than controls (11.14 µmol/l/h versus 11.85 µmol/l/h, P = 0.011). Difference compared to controls persisted in patients with idiopathic Parkinson’s disease (after exclusion of all GBA andLRRK2 carriers; 11.53 µmol/l/h, versus 12.11 µmol/l/h, P = 0.036) and after adjustment for age and gender (P = 0.012). Interestingly, LRRK2 G2019S carriers (n = 36), most of whom had Parkinson’s disease, had higher enzymatic activity than non-carriers (13.69 µmol/l/h versus 11.93 µmol/l/h, P =0.002). In patients with idiopathic Parkinson’s, higher glucocerebrosidase enzymatic activity was associated with longer disease duration (P = 0.002) in adjusted models, suggesting a milder disease course. We conclude that lower glucocerebrosidase enzymatic activity is strongly associated with GBAmutations, and modestly with idiopathic Parkinson’s disease. The association of lower glucocerebrosidase activity in both GBA mutation carriers and Parkinson’s patients without GBAmutations suggests that loss of glucocerebrosidase function contributes to the pathogenesis of Parkinson’s disease. High glucocerebrosidase enzymatic activity in LRRK2 G2019S carriers may reflect a distinct pathogenic mechanism. Taken together, these data suggest that glucocerebrosidase enzymatic activity could be a modifiable therapeutic target.

Brain 2015

Cognitive impairment 18 years before clinical diagnosis of Alzheimer disease dementia

Objective: To examine the relation of performance on brief cognitive tests to development of clinically diagnosed Alzheimer disease (AD) dementia over the following 18 years in a sample of African Americans and European Americans.
Methods: A composite cognitive test score based on tests of episodic memory, executive function, and global cognition was constructed in a prospective population-based sample of 2,125 participants (55% African American and 61% female) aged 65 years and older residing in 4 Chicago neighborhoods. Time before AD dementia diagnosis was categorized into 6 groups corresponding to data collection periods: 0.1–0.9, 1.0–3.9, 4.0–6.9, 7.0–9.9, 10.0–12.9, and 13.0–17.9 years.
Results: Of 2,125 participants without clinical AD dementia, 442 (21%) developed clinical AD dementia over 18 years of follow-up. Lower composite cognitive test scores were associated with the development of AD dementia over the duration of the study. The magnitude of association between composite cognitive test score and development of AD dementia increased from an odds ratio of 3.39 (95% confidence interval 1.72, 6.67; p < 0.001) at 13.0–17.9 years to 9.84 (95% confidence interval 7.41, 13.06; p < 0.001) at 0.1–0.9 years, per SD increment. These associations were consistently larger among European Americans than among African Americans. Performance on individual cognitive tests of episodic memory, executive function, and global cognition also significantly predicted the development of AD dementia, with associations exhibiting a similar trend over 18 years.
Conclusions: Our findings suggest that cognitive impairment may manifest in the preclinical phase of AD dementia substantially earlier than previously established.

Neurology 2015

Paraneoplastic neurologic disorders in small cell lung carcinoma A prospective study

Objective: To determine the frequency and range of paraneoplastic neurologic disorders (PNDs) and neuronal antibodies in small cell lung carcinoma (SCLC).
Methods: Two hundred sixty-four consecutive patients with biopsy-proven SCLC were recruited at the time of tumor diagnosis. All patients underwent full neurologic examination. Serum samples were taken prior to chemotherapy and analyzed for 15 neuronal antibodies. Thirty-eight healthy controls were analyzed in parallel.
Results: PNDs were quite prevalent (n = 24, 9.4%), most frequently Lambert-Eaton myasthenic syndrome (3.8%), sensory neuronopathy (1.9%), and limbic encephalitis (1.5%). Eighty-seven percent of all patients with PNDs had antibodies to SOX2 (62.5%), HuD (41.7%), or P/Q VGCC (50%), irrespective of their syndrome. Other neuronal antibodies were found at lower frequencies (GABAb receptor [12.5%] and N-type VGCC [20.8%]) or very rarely (GAD65, amphiphysin, Ri, CRMP5, Ma2, Yo, VGKC complex, CASPR2, LGI1, and NMDA receptor [all <5%]).
Conclusions: The spectrum of PNDs is broader and the frequency is higher than previously appreciated, and selected antibody tests (SOX2, HuD, VGCC) can help determine the presence of an SCLC.

Neurology 2015

Reduced neurofilament expression in cutaneous nerve fibers of patients with CMT2E

Objective: To investigate the effects of NEFL Glu396Lys mutation on the expression and assembly of neurofilaments (NFs) in cutaneous nerve fibers of patients with Charcot-Marie-Tooth disease type 2E (CMT2E).
Methods: A large family with CMT2E underwent clinical, electrophysiologic, and skin biopsy studies. Biopsies were processed by indirect immunofluorescence (IF), electron microscopy (EM), and Western blot analysis.
Results: The clinical features demonstrated intrafamilial phenotypic variability, and the electrophysiologic findings revealed nerve conductions that were either slow or in the intermediate range. All patients had reduced or absent compound muscular action potential amplitudes. Skin biopsies showed axons labeled with the axonal markers protein gene product 9.5 and α-tubulin, but not with NFs. The results of Western blot analysis were consistent with those of IF, showing reduced or absent NFs and normal expression of α-tubulin. EM revealed clusters of regenerated fibers, in absence of myelin sheath abnormalities. Both IF and EM failed to show NF aggregates in dermal axons. The morphometric analysis showed a smaller axonal caliber in patients than in controls. The study of the nodal/paranodal architecture demonstrated that sodium channels and Caspr were correctly localized in patients with CMT2E.
Conclusions: Decrease in NF abundance may be a pathologic marker of CMT2E. The lack of NF aggregates, consistent with prior studies, suggests that they occur proximally leading to subsequent alterations in the axonal cytoskeleton. The small axonal caliber, along with the normal molecular architecture of nodes and paranodes, explain the reduced velocities detected in patients with CMT2E. Our results also demonstrate that skin biopsy can provide evidence of pathologic and pathogenic abnormalities in patients with CMT2E

Neurology 2015

Electroclinical spectrum of the neuronal ceroid lipofuscinoses associated with CLN6 mutations

Objectives: To describe the clinical and neurophysiologic patterns of patients with neuronal ceroid lipofuscinoses associated with CLN6 mutations.
Methods: We reviewed the features of 11 patients with different ages at onset.
Results: Clinical disease onset occurred within the first decade of life in 8 patients and in the second and third decades in 3. All children presented with progressive cognitive regression associated with ataxia and pyramidal and extrapyramidal signs. Recurrent seizures, visual loss, and myoclonus were mostly reported after a delay from onset; 7 children were chairbound and had severe dementia less than 4 years from onset. One child, with onset at 8 years, had a milder course. Three patients with a teenage/adult onset presented with a classic progressive myoclonic epilepsy phenotype that was preceded by learning disability in one. The EEG background was slow close to disease onset in 7 children, and later showed severe attenuation; a photoparoxysmal response (PPR) was present in all. The 3 teenage/adult patients had normal EEG background and an intense PPR. Early attenuation of the electroretinogram was seen only in children with onset younger than 5.5 years. Somatosensory evoked potentials were extremely enlarged in all patients.
Conclusions: In all patients, multifocal myoclonic jerks and seizures were a key feature, but myoclonic seizures were an early and prominent sign in the teenage/adult form only. Conversely, the childhood-onset form was characterized by initial and severe cognitive impairment coupled with electroretinogram and EEG attenuation. Cortical hyperexcitability, shown by the PPR and enlarged somatosensory evoked potentials, was a universal feature.

Neurology 2015

Selenoprotein biosynthesis defect causes progressive encephalopathy with elevated lactate

Objective: We aimed to decipher the molecular genetic basis of disease in a cohort of children with a uniform clinical presentation of neonatal irritability, spastic or dystonic quadriplegia, virtually absent psychomotor development, axonal neuropathy, and elevated blood/CSF lactate.
Methods: We performed whole-exome sequencing of blood DNA from the index patients. Detected compound heterozygous mutations were confirmed by Sanger sequencing. Structural predictions and a bacterial activity assay were performed to evaluate the functional consequences of the mutations. Mass spectrometry, Western blotting, and protein oxidation detection were used to analyze the effects of selenoprotein deficiency.
Results: Neuropathology indicated laminar necrosis and severe loss of myelin, with neuron loss and astrogliosis. In 3 families, we identified a missense (p.Thr325Ser) and a nonsense (p.Tyr429*) mutation in SEPSECS, encoding the O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase, which was previously associated with progressive cerebellocerebral atrophy. We show that the mutations do not completely abolish the activity of SEPSECS, but lead to decreased selenoprotein levels, with demonstrated increase in oxidative protein damage in the patient brain.
Conclusions: These results extend the phenotypes caused by defective selenocysteine biosynthesis, and suggestSEPSECS as a candidate gene for progressive encephalopathies with lactate elevation.

Neurology 2015

sabato 20 giugno 2015

Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI

Axonal injury is a major contributor to adverse outcomes following brain trauma. However, the extent of axonal injury cannot currently be assessed reliably in living humans. Here, we used two experimental methods with distinct noise sources and limitations in the same cohort of 15 patients with severe traumatic brain injury to assess axonal injury. One hundred kilodalton cut-off microdialysis catheters were implanted at a median time of 17 h (13–29 h) after injury in normal appearing (on computed tomography scan) frontal white matter in all patients, and samples were collected for at least 72 h. Multiple analytes, such as the metabolic markers glucose, lactate, pyruvate, glutamate and tau and amyloid-β proteins, were measured every 1–2 h in the microdialysis samples. Diffusion tensor magnetic resonance imaging scans at 3 T were performed 2–9 weeks after injury in 11 patients. Stability of diffusion tensor imaging findings was verified by repeat scans 1–3 years later in seven patients. An additional four patients were scanned only at 1–3 years after injury. Imaging abnormalities were assessed based on comparisons with five healthy control subjects for each patient, matched by age and sex (32 controls in total). No safety concerns arose during either microdialysis or scanning. We found that acute microdialysis measurements of the axonal cytoskeletal protein tau in the brain extracellular space correlated well with diffusion tensor magnetic resonance imaging-based measurements of reduced brain white matter integrity in the 1-cm radius white matter-masked region near the microdialysis catheter insertion sites. Specifically, we found a significant inverse correlation between microdialysis measured levels of tau 13–36 h after injury and anisotropy reductions in comparison with healthy controls (Spearman’s r = −0.64, P = 0.006). Anisotropy reductions near microdialysis catheter insertion sites were highly correlated with reductions in multiple additional white matter regions. We interpret this result to mean that both microdialysis and diffusion tensor magnetic resonance imaging accurately reflect the same pathophysiological process: traumatic axonal injury. This cross-validation increases confidence in both methods for the clinical assessment of axonal injury. However, neither microdialysis nor diffusion tensor magnetic resonance imaging have been validated versus post-mortem histology in humans. Furthermore, future work will be required to determine the prognostic significance of these assessments of traumatic axonal injury when combined with other clinical and radiological measures.

Brain 2015

Hereditary spastic paraplegia SPG4: what is known and not known about the disease

Mutations in more than 70 distinct loci and more than 50 mutated gene products have been identified in patients with hereditary spastic paraplegias, a diverse group of neurological disorders characterized predominantly, but not exclusively, by progressive lower limb spasticity and weakness resulting from distal degeneration of corticospinal tract axons. Mutations in the SPAST (previously known as SPG4) gene that encodes the microtubule-severing protein called spastin, are the most common cause of the disease. The aetiology of the disease is poorly understood, but partial loss of microtubule-severing activity resulting from inactivating mutations in one SPAST allele is the most postulated explanation. Microtubule severing is important for regulating various aspects of the microtubule array, including microtubule number, length, and mobility. In addition, higher numbers of dynamic plus-ends of microtubules, resulting from microtubule-severing events, may play a role in endosomal tubulation and fission. Even so, there is growing evidence that decreased severing of microtubules does not fully explain HSP-SPG4. The presence of two translation initiation codons in SPAST allows synthesis of two spastin isoforms: a full-length isoform called M1 and a slightly shorter isoform called M87. M87 is more abundant in both neuronal and non-neuronal tissues. Studies on rodents suggest that M1 is only readily detected in adult spinal cord, which is where nerve degeneration mainly occurs in humans with HSP-SPG4. M1, due to its hydrophobic N-terminal domain not shared by M87, may insert into endoplasmic reticulum membrane, and together with reticulons, atlastin and REEP1, may play a role in the morphogenesis of this organelle. Some mutated spastins may act in dominant-negative fashion to lower microtubule-severing activity, but others have detrimental effects on neurons without further lowering microtubule severing. The observed adverse effects on microtubule dynamics, axonal transport, endoplasmic reticulum, and endosomal trafficking are likely caused not only by diminished severing of microtubules, but also by neurotoxicity of mutant spastin proteins, chiefly M1. Some large deletions inSPAST might also affect the function of adjacent genes, further complicating the aetiology of the disease.

Brain 2015

New Clinical Subtypes of Parkinson Disease and Their Longitudinal Progression A Prospective Cohort Comparison With Other Phenotypes

Importance  There is increasing evidence that Parkinson disease (PD) is heterogeneous in its clinical presentation and prognosis. Defining subtypes of PD is needed to better understand underlying mechanisms, predict disease course, and eventually design more efficient personalized management strategies.
Objectives  To identify clinical subtypes of PD, compare the prognosis and progression rate between PD phenotypes, and compare the ability to predict prognosis in our subtypes and those from previously published clustering solutions.
Design, Setting, and Participants  Prospective cohort study. The cohorts were from 2 movement disorders clinics in Montreal, Quebec, Canada (patients were enrolled during the period from 2005 to 2013). A total of 113 patients with idiopathic PD were enrolled. A comprehensive spectrum of motor and nonmotor features (motor severity, motor complications, motor subtypes, quantitative motor tests, autonomic and psychiatric manifestations, olfaction, color vision, sleep parameters, and neurocognitive testing) were assessed at baseline. After a mean follow-up time of 4.5 years, 76 patients were reassessed. In addition to reanalysis of baseline variables, a global composite outcome was created by merging standardized scores for motor symptoms, motor signs, cognitive function, and other nonmotor manifestations.
Main Outcomes and Measures  Changes in the quintiles of the global composite outcome and its components were compared between different subtypes.
Results  The best cluster solution found was based on orthostatic hypotension, mild cognitive impairment, rapid eye movement sleep behavior disorder (RBD), depression, anxiety, and Unified Parkinson’s Disease Rating Scale Part II and Part III scores at baseline. Three subtypes were defined as mainly motor/slow progressiondiffuse/malignant, and intermediate. Despite similar age and disease duration, patients with the diffuse/malignant phenotype were more likely to have mild cognitive impairment, orthostatic hypotension, and RBD at baseline, and at prospective follow-up, they showed a more rapid progression in cognition (odds ratio [OR], 8.7 [95% CI, 4.0-18.7]; P < .001), other nonmotor symptoms (OR, 10.0 [95% CI, 4.3-23.2]; P < .001), motor signs (OR, 4.1 [95% CI, 1.8-9.1]; P = .001), motor symptoms (OR, 2.9 [95% CI, 1.3-6.2]; P < .01), and the global composite outcome (OR, 8.0 [95% CI, 3.7-17.7]; P < .001).
Conclusions and Relevance  It is recommended to screen patients with PD for mild cognitive impairment, orthostatic hypotension, and RBD even at baseline visits. These nonmotor features identify a diffuse/malignant subgroup of patients with PD for whom the most rapid progression rate could be expected.
JAMA Neurology 2015

R47H Variant of TREM2 Associated With Alzheimer Disease in a Large Late-Onset Family Clinical, Genetic, and Neuropathological Study

Importance  The R47H variant in the triggering receptor expressed on myeloid cells 2 gene (TREM2), a modulator of the immune response of microglia, is a strong genetic risk factor for Alzheimer disease (AD) and possibly other neurodegenerative disorders.
Objective  To investigate a large family with late-onset AD (LOAD), in which R47H cosegregated with 75% of cases.
Design, Setting, and Participants  This study includes genetic and pathologic studies of families with LOAD from 1985 to 2014. A total of 131 families with LOAD (751 individuals) were included from the University of Washington Alzheimer Disease Research Center. To identify LOAD genes/risk factors in the LOAD123 family with 21 affected members and 12 autopsies, we sequenced 4 exomes. Candidate variants were tested for cosegregation with the disease. TREM2 R47H was genotyped in an additional 130 families with LOAD. We performed clinical and neuropathological assessments of patients with and without R47H and evaluated the variant’s effect on brain pathology, cellular morphology, and expression of microglial markers.
Main Outcomes and Measures  We assessed the effect of TREM2 genotype on age at onset and disease duration. We compared Braak and Consortium to Establish a Registry for Alzheimer’s Disease scores, presence of α-synuclein and TAR DNA-binding protein 43 aggregates, and additional vascular or Parkinson pathology in TREM2 R47H carriers vs noncarriers. Microglial activation was assessed by quantitative immunohistochemistry and morphometry.
Results  Twelve of 16 patients with AD in the LOAD123 family carried R47H. Eleven patients with dementia had apolipoprotein E 4 (ApoE4) and R47H genotypes. We also found a rare missense variant, D353N, in a nominated AD risk gene, unc-5 homolog C (UNC5C), in 5 affected individuals in the LOAD123 family. R47H carriers demonstrated a shortened disease duration (mean [SD], 6.7 [2.8] vs 11.1 [6.6] years; 2-tailed t test; P = .04) and more frequent α-synucleinopathy. The panmicroglial marker ionized calcium-binding adapter molecule 1 was decreased in all AD cases and the decrease was most pronounced in R47H carriers (mean [SD], in the hilus: 0.114 [0.13] for R47H_AD vs 0.574 [0.26] for control individuals; 2-tailedt test; P = .005 and vs 0.465 [0.32] for AD; P = .02; in frontal cortex gray matter: 0.006 [0.004] for R47H_AD vs 0.016 [0.01] for AD; P = .04 and vs 0.033 [0.013] for control individuals; P < .001). Major histocompatibility complex class II, a marker of microglial activation, was increased in all patients with AD (AD: 2.5, R47H_AD: 2.7, and control: 1.0; P < .01).
Conclusions and Relevance  Our results demonstrate a complex genetic landscape of LOAD, even in a single pedigree with an apparent autosomal dominant pattern of inheritance. ApoE4, TREM2 R47H, and rare variants in other genes, such as UNC5C D353N, are likely responsible for the notable occurrence of AD in this family. Our findings support the role of the TREM2 receptor in microglial clearance of aggregation-prone proteins that is compromised in R47H carriers and may accelerate the course of disease.

JAMA Neurology 2015