A long-standing mystery surrounding ataxia-telangiectasia is why it is mainly cerebellar neurons, Purkinje cells in particular, that appear vulnerable to ATM deficiency. Here we present data showing that 5-hydroxymethylcytosine (5hmC), a newly recognized epigenetic marker found at high levels in neurons, is substantially reduced in human ataxia-telangiectasia and Atm−/− mouse cerebellar Purkinje cells. We further show that TET1, an enzyme that converts 5-methylcytosine (5mC) to 5hmC, responds to DNA damage and manipulation of TET1 activity directly affects the DNA damage signalling and ATM-deficient neuronal cell cycle re-entry and death. Quantitative genome-wide analysis of 5hmC-containing sequences shows that in ATM deficiency there is a cerebellum- and Purkinje cell-specific shift in 5hmC enrichment in both regulatory elements and repeated sequences. Finally, we verify that TET1-mediated 5hmC production is linked to the degenerative process of Purkinje cells and behavioural deficits in Atm−/− mice. Taken together, the selective loss of 5hmC plays a critical role in driving Purkinje cell vulnerability in ATM deficiency.
Brain 2015
Nessun commento:
Posta un commento